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Outline of ideas and results

▶ Dark energy is an elusive concept whose nature is far from
being understood, both theoretically and observationally.

▶ Quasi distinguishable particles called “ewkons” obey
unorthodox statistics, and have a negative relation between
pressure and energy density.

▶ One can formulate an effective scalar field description of the
ewkon fluid, obtaining cosmological solutions for the dark
energy dominated epoch (can be considered as a
one-parameter class of dark energy models).
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Previous work: thermodynamics and transition rates

▶ Thermodynamic properties of macroscopic systems can be
derived by studying the transition rates between possible
states.

▶ We consider a system of non-interacting quantum particles in
contact with a reservoir at temperature T and chemical
potential µ.

▶ Hoyuelos, Phys.Rev.E (Hoyuelos 2022) derived transition rates
between levels with energy ϵ1 and ϵ2, with n1 and n2 particles
respectively, in terms of the residual chemical potential.

▶ It was also shown that, if the transition rate depends on the
number of particles at the destination level, then Fermi-Dirac
(FD +) and Bose-Einstein (BE −) statistics are deduced.
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Time reversed transitions and alternative statistics

▶ In a time reversed scenario, the transition rate depends on the
number of particles in the initial level. Hoyuelos & P.S.,
Phys.Rev.E (Hoyuelos-Sisterna 2016), obtained ewkons (+)
and genkons (−) statistics, with occupation numbers
n̄± = e−(ϵ−µ)/T ± 1.

▶ An ideal gas of ewkons has negative pressure; barotropic
parameter even close to −1 → possible dark energy?

▶ (Hoyuelos-Sisterna 2016) derived Ewkon statistics from the
assumption of free diffusion in energy space and the
adjustment of an “interpolation parameter”.
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Other previous work

▶ (Hoyuelos-2022) derived the same Ewkon statistics under
simpler conditions, using the Widom insertion formula.

▶ Hoyuelos, Physica A (Hoyuelos-2018a) analyzed
non-relativistic ewkons of mass m.

▶ Hoyuelos, J. Stat. Mech.: Theory Exp. (Hoyuelos-2018b)
analyzed a massless scalar field of ewkons.
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Ewkons as bulk of dark energy

▶ We study the thermodynamic properties of ewkons
throughout the history of the Universe.

▶ Assuming that the present density of ewkons accounts for the
bulk of the present density of dark energy, we will check the
consistency of the hypothesis that dark energy has the
statistics of ewkons.
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Quantum (alternative) statistics: grand partition function

Consider the grand partition function of a system of
non-interacting particles in contact with a reservoir at temperature
T and chemical potential µ: Z =

∏
kZk, where k refers to the

mode with wave vector k and, in the number eigenstates base.

Zk =
∑
n

δn e
−n(ϵk−µ)/T (1)

is the grand partition function for particles that have energy ϵk; δn
is the statistical weight factor.



Statistical weight factors

▶ Bose-Einstein (BE) statistics →δn = 1 ∀n
▶ Fermi-Dirac (FD) statistics →δ0 = δ1 = 1 and δn = 0 for

n ≥ 2.

▶ Maxwell-Boltzmann statistics →δn = 1/n!.

▶ To calculate the grand partition function Zk, the vacuum
energy term ϵk/2 is removed as usual, if we do not want the
(normal matter) vacuum to exert any pressure.



Not quite distinguishable particles: changing the lowest
state

▶ Statistical weights different from those of bosons or fermions
may represent identical particles with some degree of
distinguishability.

▶ A priori, “Identicality” and “indistinguishability” refer to
different concepts.

▶ The spin-statistics theorem applies only to indistinguishable
particles.

▶ For example, two electrons with opposite spin can be treated
as approximately distinguishable.

▶ In principle, quantum mechanics can be developed without
the symmetrization postulate (that, in turn, implies the
indistinguishability postulate), allowing more general statistics.
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Late acceleration of the Universe suggests Cosmological
Constant/Dark Energy

▶ Early Dark Energy models (e.g. Ultra-Light dissipative Axions,
Berghaus Karwal, 2020).

▶ Graduated Dark Energy (Akarsu, Barrow, Escamilla Vazquez,
2020).

▶ Late Dark Energy models (e.g. wCDM models, Di Valentino,
2017).

▶ Dynamical dark energy parameterizations with one or two free
parameters (e.g. Yang, Pan, Di Valentino, Saridakis
Chakraborty, 2019).

▶ Holographic Dark Energy (Li, 2004).



Late acceleration of the Universe suggests Cosmological
Constant/Dark Energy

▶ Phantom Braneworld Dark Energy (Alam, Bag Sahni, 2017).

▶ Phantom Dynamical Dark Energy (Dahmani, Bouali, El
Bojaddaini, Errahmani T. Ouali, 2023).

▶ Chameleon dark energy (J. Khoury, 2013).

▶ Interacting Dark Energy (L. Amendola, 2000), etc.



The Hubble tension

▶ The local value of the Hubble constant determined by the
magnitude–redshift relation of type Ia supernovae differs from
the value obtained from the measurements of the cosmic
microwave background anisotropy based on the concordance
ΛCDM model.

▶ We consider ewkons as a candidate for Late Dark Energy
Models, to be justified below.
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Outline of the talk

▶ The density and pressure of an ideal gas of ewkons obtained
for large and small temperature regimes.

▶ Statistical effects derived from a scalar field effective
description, with its corresponding potential.

▶ Functional form of the effective potential for the dark energy
dominated era.

▶ Dynamics of the scalar field.

▶ Conclusions and comparison with present models of dark
energy.
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Partition Function, density and pressure of ewkons

The lowest energy state for ewkons is |1⟩ (not |0⟩ as for bosons):

Zk =
∞∑
n=1

δne
−n(ϵk−µ)/T

= e−(ϵk−µ)/T
∞∑

n′=0

δn′+1e
−n′(ϵk−µ)/T (n=n’+1).

We define the statistical weight, δn′+1 ≡ 1/n′!, as the Gibbs factor
for distinguishable particles (Hoyuelos-2018a). Then

Zk = exp
[
−(ϵk − µ)/T + e−(ϵk−µ)/T

]
.



Mean occupation number

Therefore

n̄k = T
∂ lnZk

∂µ
= e−(ϵk−µ)/T + 1.

Main ingredients of the ewkon scenario leading to this equation:

▶ Lowest energy state other than the vacuum.

▶ Statistical weight related to the Gibbs factor.

Main motivations:

▶ This number statistics can be deduced from simple
assumptions on the transition rates (Hoyuelos-2022).

▶ The resulting thermodynamic properties connect with dark
energy.
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Thermodynamic properties of an ideal gas of (nearly)
massless ewkons

The non-relativistic case was analyzed in Hoyuelos-2018a, where
an upper bound for the mass of 0.006 eV was obtained, suggesting
relativistic Ewkons, so we assume ϵk =

√
m2 + k2 ≃ k , and zero

chemical potential. The total grand partition function is

1

V
lnZ =

1

(2π)3

∫
dk g lnZk

=
1

2π2

∫ ϵm

0
dϵ gϵ2(e−ϵ/T − ϵ/T )

where g is the degeneracy, and we consider 1 < g < 10 (sub-index
k was removed in ϵk for simplicity).



Density and pressure

We introduce a maximum energy ϵm to avoid divergences (to be
fixed later using the energy conservation equation). The energy
density and pressure are:

ρ =
g

2π2

∫ ϵm

0
dϵ ϵ3 n̄k (2)

=
gT 4

8π2

[
(u4 + 24)eu − 4u3 − 12u2 − 24u − 24

]
e−u,

p =
T

V
lnZ = −gT 4

8π2

[
(u4 − 8)eu + 4u2 + 8u + 8

]
e−u, (3)

with u = ϵm/T . The equation of state or barotropic parameter is

w =
p

ρ
= − (u4 − 8)eu + 4u2 + 8u + 8

(u4 + 24)eu − 4u3 − 12u2 − 24u − 24
. (4)



Some references of dark energy parametrization

Although this last expression is a quotient of quasi polynomials in
u, it does not resemble any known dark energy parametrization,
such as

▶ Sendra-Lazkoz, 2012,

▶ Feng-Shen-Li-Li, 2012,

▶ Barboza-Alcaniz, 2008,

▶ Chevallier-Polarski, 2001 & Linder, 2003,

▶ Jassal-Bagla-Padmanabhan, 2005,

▶ Models with a Chaplygin like fluid (Shenavar-Javidan, 2020 &
Bento-Bertolami-Sen, 2004).



Ewkon energy conservation

The momentum of each ewkon particle decays as a−1 (a is the
scale factor of the Universe), so T ∝ a−1

(a0 ≡ a(presenttime) = 1, so T = T0/a.

▶ We consider a universe in which dark energy, with density ρde
and pressure pde, behaves as ewkons.

▶ We assume that there is no interaction with matter or
radiation, so the energy conservation equation is

ρ̇de = −3
ȧ

a
(ρde + pde) = −3

ȧ

a
(w + 1)ρde. (5)

▶ Interactions may have been present during the very early
stages of the universe, so we expect T0 similar to T0(CMB)=
2.72548 K (Fixsen, 2009), or 2.34863 10−4 eV.



Solution for ϵm(T )

Adiabaticity: ρde and pde can be calculated using equilibrium
statistical mechanics.
Using ρ(u) and p(u) in the energy conservation equation and
considering that T = T (t) and ϵm = ϵm(t), after some algebra:

(eϵm/T + 1)
ϵ̇m
ϵm

=

(
1 +

T

ϵm

)
Ṫ

T
, (6)

or, in terms of u and a,

(1 + eu)

(1− u eu)
u̇ = − ȧ

a
.

(7)

The solution is
ϵm
T

=
ϵ∞
T

+ e−ϵm/T , (8)

where ϵ∞ is the (constant) value of ϵm in the limit of small
temperature, T ≪ ϵ∞, a → ∞, t → ∞.
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a
. (7)

The solution is
ϵm
T

=
ϵ∞
T

+ e−ϵm/T , (8)

where ϵ∞ is the (constant) value of ϵm in the limit of small
temperature, T ≪ ϵ∞, a → ∞, t → ∞.



Small temperature limit T ≪ ϵ∞

In this limit we have u ≫ 1 and ϵm = ϵ∞. We obtain:

ρde =
gϵ4∞
8π2

; pde = −gϵ4∞
8π2

; w = −1

so ewkons behave as a cosmological constant.

▶ Assuming k = 0 and using H0 and Ωde ≃ 0.68 from the
Planck Collaboration, then ρ0de = 2.53 10−11 eV4.

▶ In a present small-temperature regime: ϵ∞ = 0.0067eV for
g = 1, or 0.0038eV for g = 10, i.e. between 16 to 28 times
larger than T0 (assuming T0 = TCMB

0 , large enough to
neglect the exponential term in Eq. (8)).

▶ Thus ρde ≃ const = ρ0de ≃ ρ∞de, so

ρ∞ ≡ ρ∞de =
gϵ4∞
8π2

. (9)
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Large temperature, T ≫ ϵ∞

We can neglect the first term in the right-hand side of Eq. (8):

ϵm
T

= e−ϵm/T , (10)

Solution: ϵm = 0.567T (so u → ∞ for t → ∞ and u → 0.567 for
early times). Then we obtain:

ρde = 2.15 10−3 gT 4 (11)

pde = 0.715 10−3 gT 4 (12)

w = 1/3, (13)

where the numbers in Eqs. (11) and (12) can be computed with
arbitrary precision. Then for T ≫ ϵ∞ ewkons behave as radiation,
with ρde ∼ a−4.



Crossover values

Comparing Eqs. (9) and (11), the scale factor at the crossover
between both regimes is

ac = T0

(
2.15 10−3g

ρ0

)1/4

, (14)

corresponding to 0.04 > a > 0.02 (24 < z < 49) for 10 > g > 1.
The range of the crossover temperature is 0.01 eV< T < 0.006 eV
(70K < T < 115K ).



Evolution of w
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Figure: w(a) for dark energy with ewkon statistics in log scale (Eq. (4));
u = ϵm/T obtained from Eq. (8); T = T0/a.
The thickness of the curve represents 1 < g < 10. w takes the
asymptotic values 1/3 and −1 for small a and large a respectively.
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Figure: Density against scale factor in log-log scale. The density of dark
energy (blue) is obtained from Eq. (2) with u calculated from Eq. (8); the
thickness of the curve corresponds to 1 < g < 10. Densities of matter
(dashed line) and radiation (dotted line) are also shown for comparison.



Some preliminary comments

▶ Close to a = 1, the density of ewkons overcomes the density
of matter and dominates at present.

▶ In the large temperature regime (relativistic ewkons), the
density of ewkons is around 300 to 30 times smaller than the
density of radiation for 1 < g < 10.

▶ The evolution of ewkons is consistent with dark energy
throughout the universe’s history: adjusting the value of ϵ∞,
ewkons currently have w ≃ 1.

▶ Although the density of ewkons increases in the past, it never
dominates in that epoch.

▶ These results are consistent with the hot big bang theory: a
radiation-dominated universe followed by a matter-dominated
universe.
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throughout the universe’s history: adjusting the value of ϵ∞,
ewkons currently have w ≃ 1.

▶ Although the density of ewkons increases in the past, it never
dominates in that epoch.

▶ These results are consistent with the hot big bang theory: a
radiation-dominated universe followed by a matter-dominated
universe.



The effective scalar field description of ewkons

▶ The idea of representing statistical effects with an effective
potential has been applied to fermions aswell as bosons.

▶ It is important to keep in mind that particles are
non-interacting and the effective potential V (ϕ) is chosen just
to reproduce the statistical effects of ewkons. We have

− V ′ ≡ −∂V

∂ϕ
= ϕ̈+ 3Hϕ̇, (15)

ρϕ =
1

2
ϕ̇2 + V , (16)

pϕ =
1

2
ϕ̇2 − V . (17)
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Using Eqs. (2) and (3):

V =
ρϕ − pϕ

2

= ρ∞
u4 + 8− 2

(
u3 + 2 u2 + 4 u + 4

)
e−u

(u − e−u)4
−−−→
u→∞

ρ∞, (18)

where ρ∞ was defined in (9) and from Eq. (8) we obtained:

T =
ϵ∞

u − e−u
. (19)
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Figure: The potential V as a function of u = ϵm/T ; it diverges at
u ≃ 0.567 (dotted vertical line). Recall that this (constant) asymptotic
value of u corresponds to T → ∞ (a → 0).



To obtain V ′ we see that:

V ′ =
dV

du

du

da

da

dϕ
. (20)

u(a) and a is given by (19) and T = T0/a:

a = α(u − e−u), (21)

where α ≡ T0/ϵ∞ is a constant. Then:

du

da
=

1

α(1 + e−u).
(22)



Given that ϕ̇2 = ρϕ + pϕ, then (we choose the positive square root
for ϕ̇; we clarify this point below)

:
da

dϕ
=

ȧ

ϕ̇
=

aH
√
ρϕ + pϕ

, (23)

Thus we have a, ρϕ and pϕ in terms of u.
From (22) and (23) we have also du/da and da/dϕ in terms of u.
Using them in (20) we obtain also V ′ as a function of u.
This process can be repeated to obtain

V ′′ =
dV ′

du

du

da

da

dϕ
, (24)

etc. These (large) expressions can be calculated with a
computational algebra software, including the limit of the
derivatives of the potential when u → ∞.



Dark energy dominated era

The Friedmann equation is H2 = ρtot/(3m
2
P) ≃ ρde/(3m

2
P)

mP = 1/
√
8πG is the reduced Planck mass and the total density

ρtot is similar to ρde in the dark energy dominate era.
From (23)

da

dϕ
=

α(u − e−u)√
3mP

√
1 + w

, (25)

where Eq. (21) was used for a, and w(u) was written in (4).



Sequence obtained for the derivatives of the potential:

V
(n)
∞ = 0 for n odd,

V
(n)
∞ = ρ∞

6

(
2
mP

)n
for n even,

(26)

where “∞” u → ∞.
The sequence was numerically checked up to n = 20.
For simplicity we take ϕ∞ = 0, when u → ∞.
Using the Taylor expansion

V = V∞ + V ′
∞ϕ+ V ′′

∞ϕ2/2! + · · · , (27)

we obtain

V (ϕ) =
ρ∞
6

[
5 + cosh

(
2ϕ

mP

)]
. (28)



, where the ewkons approach a cosmological constant like behavior
in the long run. (Scherrer-2008, Chiba-2009, Gong-2014,
Gupta-2015, You-2023)



V (ϕ) and Γ(ϕ) in the dark energy dominated era
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▶ Γ diverges when ϕ → ϕ∞ = 0 at the bottom of the potential.

▶ The present value of the dimensionless scalar field ϕ0/mP is
−0.006 for g = 1 or −0.02 for g = 10.

▶ Same results for both signs of the square root that appears in Eq.
(23)(i.e. ϕ̇ > 0 or < 0).

▶ Initial conditions ϕ > ϕ∞ = 0 and ϕ < ϕ∞ = 0 are equivalent.
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Dynamics of the scalar field ϕ

▶ We solve the Klein-Gordon equation (15) with V (ϕ) for ϕ(t), to
verify that V (ϕ) correctly reproduces the behavior we obtained for
small T , a condition that approximately overlap with the regime of
dominant ewkons.

▶ If ewkons already account for the bulk of dark energy, the
cosmology studied would be valid from the present time
throughout the far future of the Universe.

▶ Recall that Ewkons are described by a gas of ultra relativistic
particles at temperature T .
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Scalar field description of dark energy domination (small
temperature):

We have ϵm ≃ ϵ∞, u ≃ ϵ∞/T ≫ 1, a ≫ 1 and |ϕ|/mP ≪ 1
(Ωde = 1).
Eqs. (18) and (28) give V (u) and V (ϕ) respectively.
Approximating both equations in the present regime:

V = ρ∞(1 + 8/u4) (29)

V = ρ∞
[
1 + ϕ2/(3m2

P)
]

(30)

and, combining them,

ϕ

mP
=

√
24

u2
=

√
24T 2

ϵ2m
≃

√
24T 2

0

ϵ2∞

1

a2
, (31)

where both signs of the square root are possible.



No slow roll

From this equation, we obtain:

ϕ̇ = −2ϕH (32)

ϕ̈ = −2ϕ̇H (33)

where in the last equation the term −2ϕḢ was neglected, since it
can be shown that −2ϕḢ ∝ 1/a6.

▶ Given that H ∼ H0 up to a term proportional to a−4, we conclude
that ϕ, ϕ̇ and ϕ̈ behave as 1/a2.

▶ Therefore ϕ̈ cannot be neglected in (15) so, although the kinetic
energy of the scalar field may be much less than V , the slow roll
approximation does not fully hold.
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The evolution equation now becomes (recall that we have not
neglected the ϕ̈ term, but absorbed it in the ϕ̇ one):

Hϕ̇+ V ′ = 0. (34)

Keeping terms up to order 1/a2, H ≃ √
ρ∞/(

√
3mP), where, since

Ωde = 1, we have taken ρtot = ρde ≃ ρ∞. Then,

ϕ̇+ λϕ = 0, (35)

with

λ ≡ 2

mP

√
ρ∞
3

=

√
32

3
πGρ∞. (36)



Exponential decay of the scalar field

ϕ = ϕ0 exp [−λ(t − t0)] (37)

with ϕ0 ≡ ϕ(t0).
We confirm that the asymptotic value of the scalar field coincides
with the minimum of the potential ϕ∞ = 0.
Replacing a = 1 in (31):

ϕ0

mP
=

√
24T 2

0

ϵ2∞
. (38)

Using the values of ϵ∞ computed previously, |ϕ0|/mP ≃ 0.006 for
g = 1, and ≃ 0.02, for g = 10.



Exponential increase of the scale factor

From Eq. (31):
a = eλ(t−t0)/2. (39)

From the expression for ρ(ϕ) ((16)):

ρde = ρ∞

(
1 +

(
ϕ0

mP

)2

e−2λ(t−t0)

)
, (40)

confirming that, at present, ρ0 is approximately equal to ρ∞.



Future evolution of ρde/ρ∞ (Eq. (40)).
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▶ The upper and lower curves correspond to g = 10 and g = 1
respectively.

▶ At present, ρde is already similar to ρ∞.

▶ The decay constant λ ≃ (8740 Myr)−1 (from Eq. (36)).
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Conclusions

▶ We have obtained cosmological solutions for recently introduced
quasi-indistinguishable particles called ewkons, which do not
interact with ordinary matter (at least in the recent history of the
Universe).

▶ Under the assumption of energy conservation, the cut-off energy is
a time-dependent quantity.

▶ These particles have a dark-energy type equation of state, which
makes them a possible explanation of the accelerated expansion of
the Universe.

▶ In the case of massless ewkons, the solution has the remarkable
property that the presence of ewkons remains almost unnoticed
until recent times, when the Universe becomes ewkon-dominated.
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▶ To compare our proposal with current literature, we derived a
scalar field effective picture of the scenario, and compared the
potential obtained with other models.

▶ The potential corresponds to an effective description of these
quasi-indistinguishable particles that represents statistical effects;
however, we should keep in mind that these particles are
non-interacting.

▶ This is a substantially different proposal from the current literature,
being based as it is on non-trivial statistical assumptions.



▶ To compare our proposal with current literature, we derived a
scalar field effective picture of the scenario, and compared the
potential obtained with other models.

▶ The potential corresponds to an effective description of these
quasi-indistinguishable particles that represents statistical effects;
however, we should keep in mind that these particles are
non-interacting.

▶ This is a substantially different proposal from the current literature,
being based as it is on non-trivial statistical assumptions.



▶ To compare our proposal with current literature, we derived a
scalar field effective picture of the scenario, and compared the
potential obtained with other models.

▶ The potential corresponds to an effective description of these
quasi-indistinguishable particles that represents statistical effects;
however, we should keep in mind that these particles are
non-interacting.

▶ This is a substantially different proposal from the current literature,
being based as it is on non-trivial statistical assumptions.



Prospects and issues to be clarified

▶ It should be explored how this might enter into the Standard
Model of particle physics, and how these particles can interact with
baryonic matter (even whether it makes sense to assign a baryon or
lepton number to them at all).

▶ Given the great generality of this approach, early dark energy
models (see e.g. Kojima-2022) can be also included in our
analysis, by choosing conveniently the ewkon parameters.

▶ However, we think it desirable to better understand the theoretical
basis of ewkons, before looking for any scalar field effective
description during the matter and radiation-dominated eras.
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▶ This is further required, considering the lack of evidence for
extensions to the ΛCDM model (see e.g. Heavens-2017) and the
delicate observational issues involved in the current cosmological
tensions (see e.g. Abdalla-2022).

▶ Finally, if we consider ϵ∞ as the only parameter to be adjusted in
our model, then we can see our approach as belonging to the
one-parameter dynamical dark-energy parametrizations.

▶ However, while these models usually involve the present barotropic
parameter w0 as the only free parameter to be adjusted
observationally with different ad-hoc functions w(a) (see e.g.
Yang-2019) for a list of five such functions), ours predict a definite
cosmological evolution for it, making it particularly interesting
from a dynamical/theoretical point of view.
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Thank you


