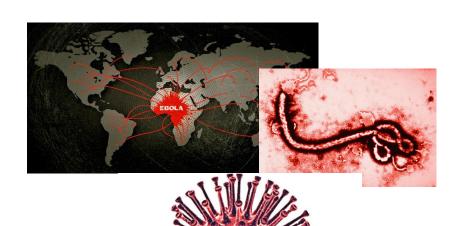
UNMdP-IFIMAR

NODOS PUENTES ENTRE COMUNIDADES: su rol en la propagación de

su rol en la propagación de epidemias

Lucas D. Valdez

¿PARA QUÉ SIRVEN LOS MODELOS **EPIDÉMICOS?**



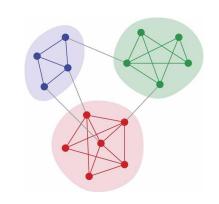
Sirven para:

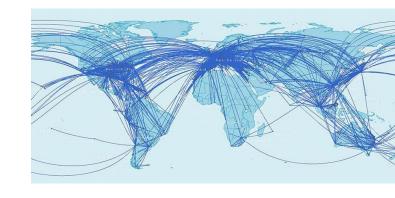
1) Estudiar la dinámica de transmisión en distintas sociedades.

2)Identificar y optimizar estrategias de prevención y control.

¿POR QUÉ LAS COMUNIDADES SON IMPORTANTES?

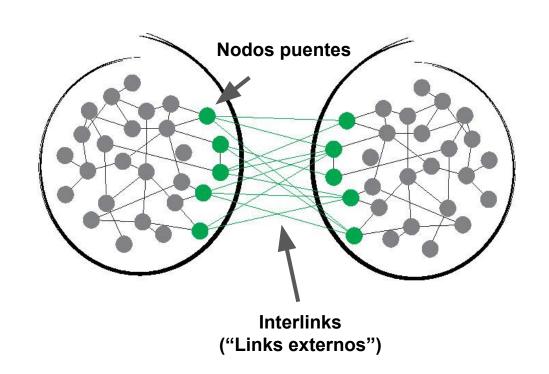
- Muchas redes reales están compuestas por comunidades.
- DEFINICIÓN: se dice que una red tiene una estructura de comunidades si los nodos de la red pueden agruparse en subconjuntos de nodos con más conexiones internas que externas.





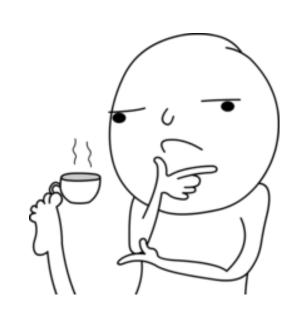
NODOS PUENTES

 Los nodos puentes tienen conexiones tanto internas como externas



PREGUNTA

¿Cómo los nodos puentes influyen sobre diferentes procesos en las redes?



ESTRUCTURA DE ESTA EXPOSICIÓN

- 1) Exponentes críticos
- 2) Modelo del Dr. Gaogao Dong sobre redes con nodos puentes
- 3) Nuestro modelo
- 4) Resultados
- 5) Conclusiones

EXPONENTES CRÍTICOS

Modelo de Ising	Percolación (nodo/link)
$M\sim (T_c-T)^{\beta}$	$P_{\infty}^{\sim}(p-p_c)^{\beta}$
$\chi \sim (T_c - T)^{-\gamma}$	$\sim p_c-p ^{-\gamma}$
M ~H ^{1/δ}	????

- En las transiciones de fase continuas, muchas magnitudes se comportan como leyes de potencia.
- Los exponentes

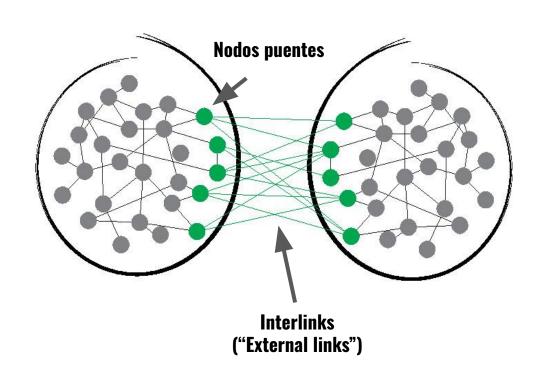
 críticos satisfacen
 identidades. Por
 ejemplo:
 - β+γ=1/σ
 - \circ δ=1+ γ / β (Identidad de Widom)

Resilience of networks with community structure behaves as if under an external field

Gaogao Dong^{a,b,c,1}, Jingfang Fan^{d,1}, Louis M. Shekhtman^{d,1}, Saray Shai^{e,1}, Ruijin Du^{a,b,c}, Lixin Tian^{f,g,2}, Xiaosong Chen^{h,i}, H. Eugene Stanley^{b,c,j,2}, and Shlomo Havlin^{d,j}

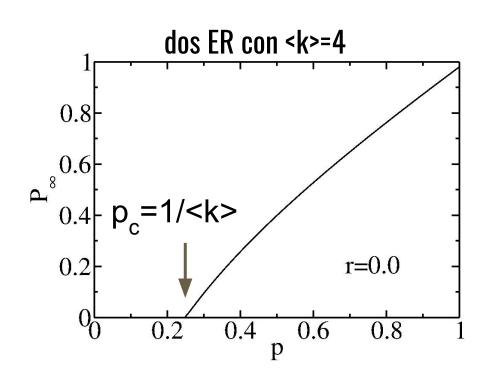
alnstitute of Applied System Analysis, Faculty of Science, Jiangsu University, Zhenjiang, 212013 Jiangsu, China; bCenter for Polymer Studies, Boston University, Boston, MA 02215; Department of Physics, Boston University, Boston, MA 02215; Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel; Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06549; School of Mathematical Sciences, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Jiangsu 210023, P. R. China; Energy Development and Environmental Protection Strategy Research Center, Faculty of Science, Jiangsu University, Zhenjiang, 212013 Jiangsu, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; and Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8502, Japan

MODELO

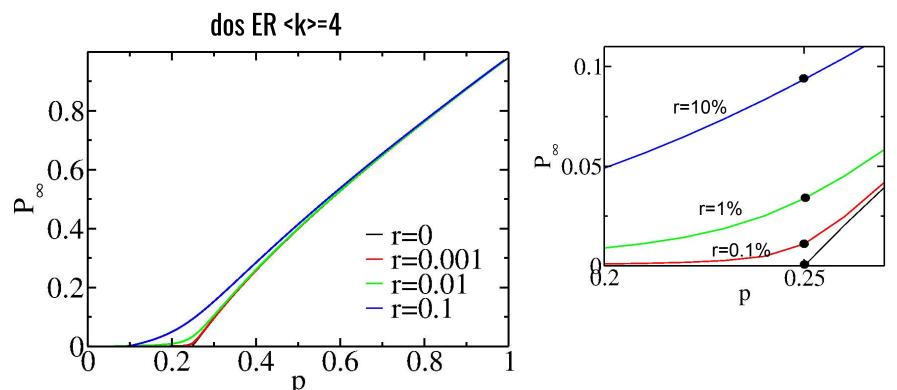


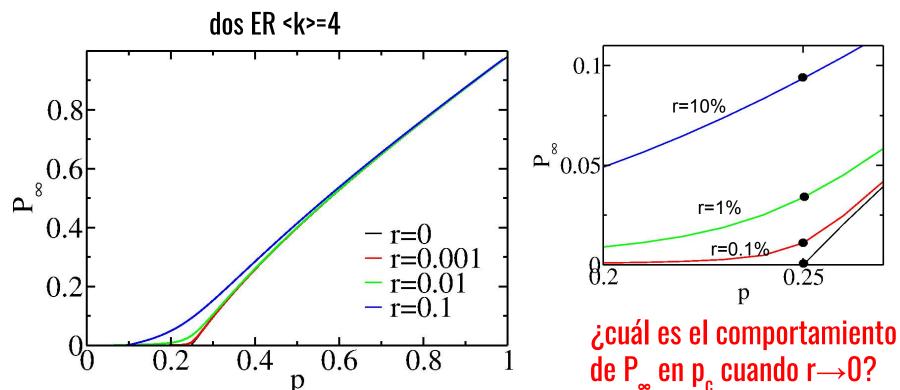
- Estudia un proceso de percolación de nodos para el caso de dos comunidades
- r: es la fracción de nodos puentes
- La distribución de conexiones externas sigue una distribución Poisson con valor medio:

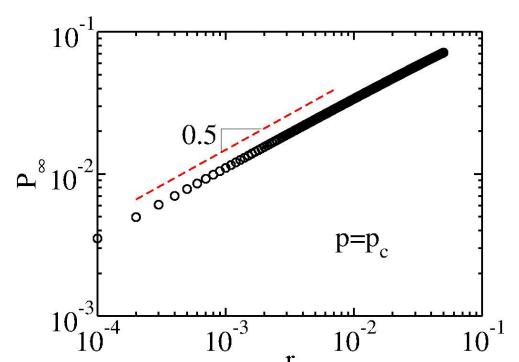
$$\langle K_{ext} \rangle = 1/r$$

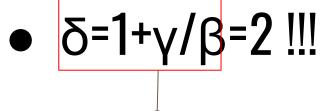


 Cuando r=0, no hay interacción entre las dos comunidades









Identidad de Widom

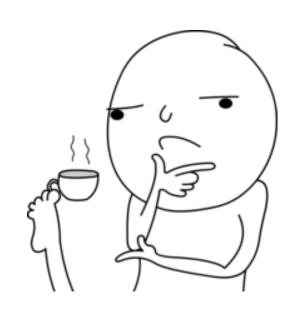
$$P_{\infty} r^{1/\delta} = r^{1/2}$$

EXPONENTES CRÍTICOS (trabajo de Gaogao)

Ising model	Percolación (nodo/link)
$M\sim (T_c-T)^{\beta}$	$P_{\infty}^{\sim}(p-p_c)^{\beta}$
$\chi \sim (T_c - T)^{-\gamma}$	$\sim p_c-p ^{-\gamma}$
M ~H ^{1/δ}	P _∞ ~ r ^{1/δ}

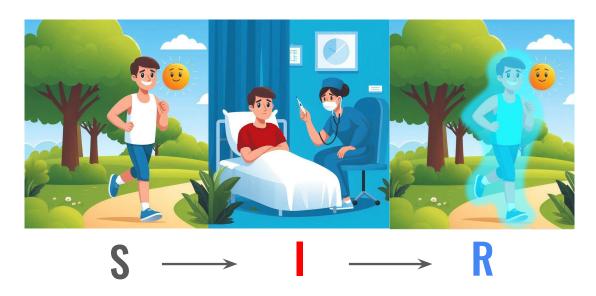
PREGUNTA

- ¿Se observa el mismo comportamiento para procesos epidémicos?
- ¿Cómo se puede explicar este fenómeno de "campo externo" desde un punto de vista geométrico o estructural?



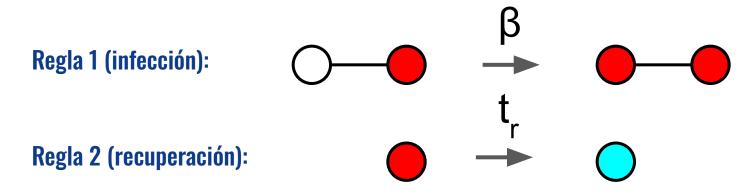
Nuestro trabajo

Estudiamos un modelo SIR (que se relaciona con percolación de links) sobre una red con dos comunidades un nodos puentes



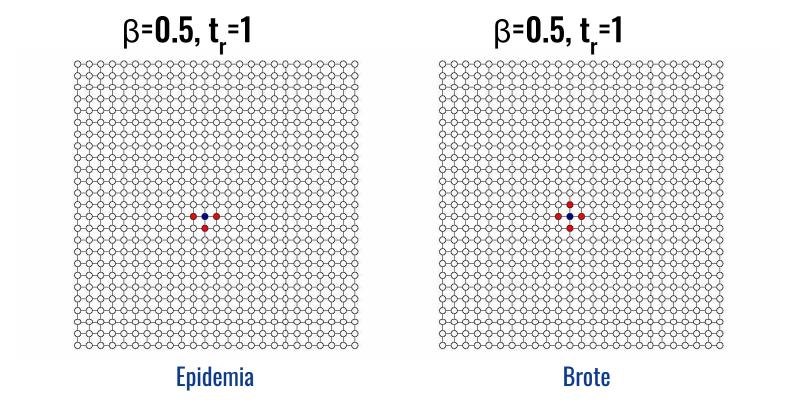
Nuestro trabajo

Estudiamos un modelo SIR (que se relaciona con percolación de links) sobre una red con dos comunidades un nodos puentes



Condición inicial: un solo individuo está infectado ("paciente cero") y el resto de la población es susceptible

Visualización del SIR (ejemplo en lattice)

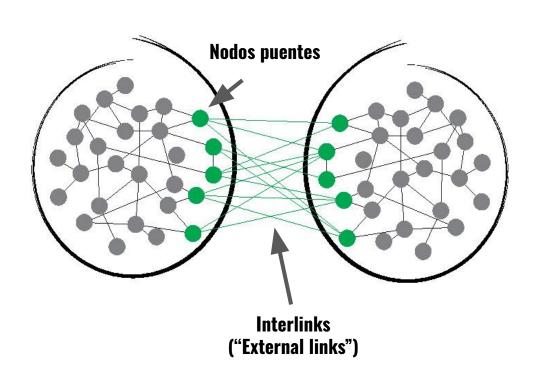


Nuestro trabajo

Estudiamos un modelo SIR (que se relaciona con percolación de links) sobre una red con dos comunidades con nodos puentes

- R: La fracción de individuos recuperados al final de la epidemia
- $T=1-(1-\beta)^{tr}$: es la transmisibilidad

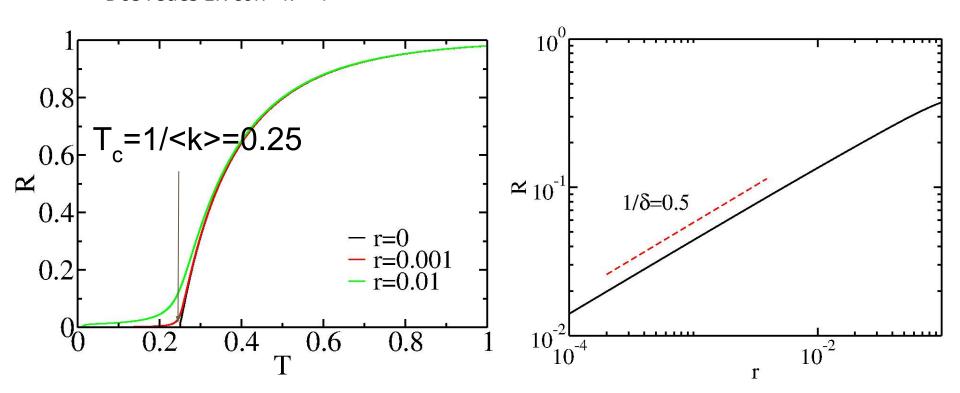
MODELO



• r: es la fracción de nodos puentes

PRIMEROS RESULTADOS

Dos redes ER con <k>=4



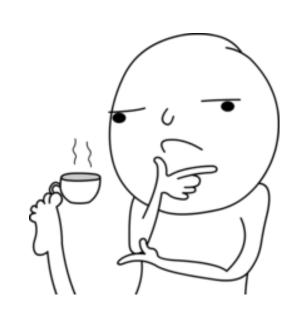
PRIMER CONCLUSIÓN

 Para un modelo epidémico SIR también se observa un comportamiento similar al de un campo externo.

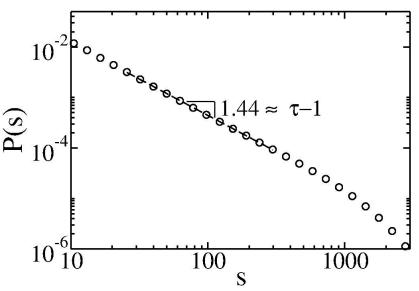
$$R^{1/\delta}$$

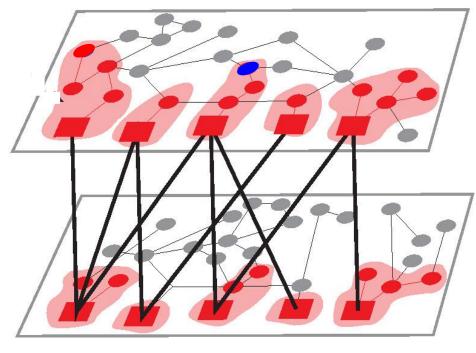
PREGUNTA

• ¿Cómo se puede explicar este fenómeno de "campo externo" desde un punto de vista geométrico o estructural?



Probabilidad de tamaños de clústeres (mirando una sola comunidad)





 $R^{r1/\delta}$

δ y clusters finitos

- $\delta = 1 + v/\beta$ Identidad de Widom
- $\delta = 1/(T-2)$

.... T es el "exponente de Fisher": el exponente de la distribución de tamaños de clústeres finitos n_s!!!!

$$P(s) \sim s^{-\tau+1}$$

$$R \approx \sum_{\infty}^{\infty} P(s)(1 - (1 - r)^s)$$

$$s=1$$
 $\approx \cdots$

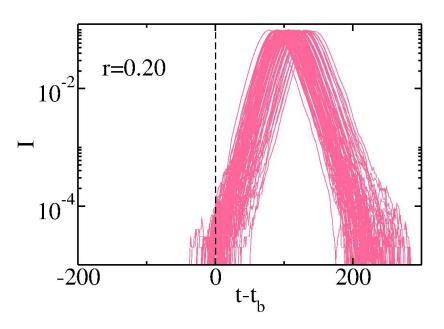
$$\approx r^{1/\delta}$$

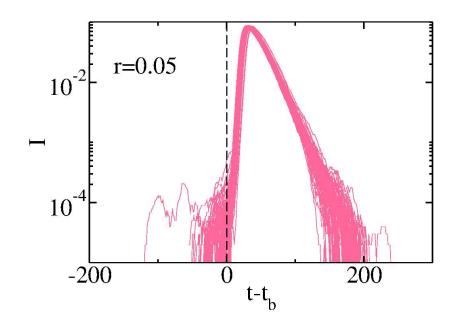
SEGUNDA CONCLUSIÓN

 Las simulaciones+teoría indican que el cluster total de infección está formado por cluster finitos/brotes unidos por los nodos puentes.

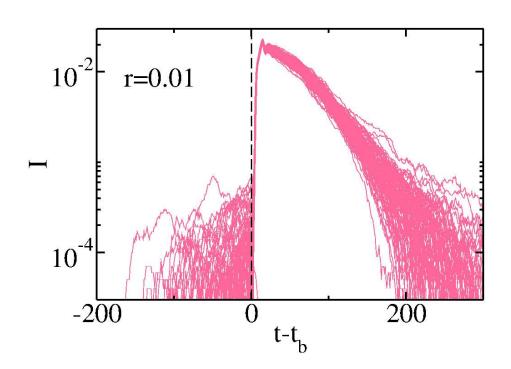
RESULTADOS: DINÁMICA

DEFINICION: el tiempo cuando el primer nodo puente es infectado t_h



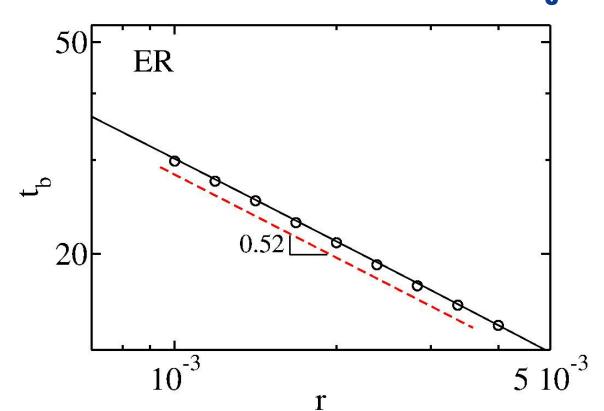


RESULTADOS: DINÁMICA



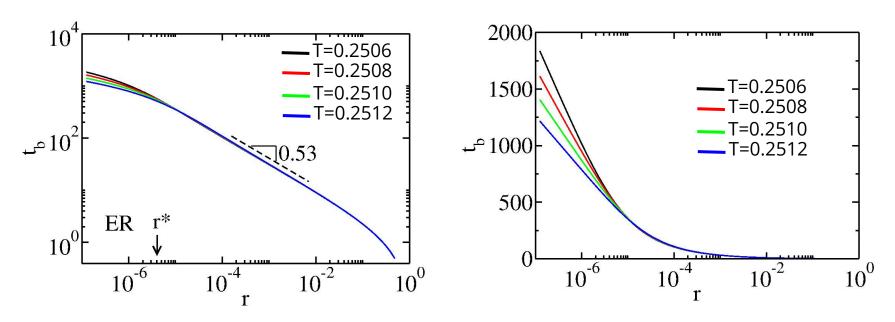
- A medida que r decrece, el número de personas infectadas explota solo después de que el primer nodo puente es infectado.
- Es de interés calcular el tiempo t_h en el cual el primer nodo puente se infecta porque habrá un rápido incremento en el número de nodos infectados.

EN EL PUNTO CRÍTICO (T=T_c)

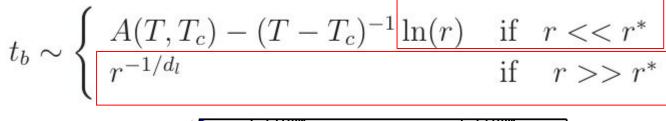


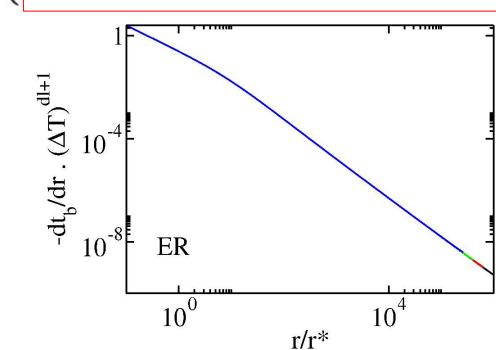
 $t_b \sim r^{-1/dl} = r^{-0.5}$ Dimensión química

POR ENCIMA DE LA CRITICALIDAD (T≳T_c)



- Para valores altos de r, t_h se comporta como una ley de potencia
- Para valores bajos de r, t
 b
 b
 e comporta como un función logarítmica





CONCLUSIONES

- Obtenemos que los nodos puentes actúan de manera análoga a un campo externo.
- 2. Esta asociación emerge de la composición del cluster epidémico, el cual consiste en una distribución de clusters finitos dentro de cada comunidad interconectados por nodos puentes.
- 3. En el régimen estocástico, justo en la transmisibilidad crítica, el tiempo to exhibe un comportamiento ley de potencia. Dicho exponente se relaciona con el exponente de dimensión química.
- 4. Por encima de la criticalidad, para $r < r^*$, the se comporta como una función logarítmica, mientras que para for $r > r^*$, siguen una función ley de potencia.

Gracias!!

