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Exponential divergence and chaotic diffusion

» An specific property of chaotic motion in a non-linear system is the
essential sensitivity to initial conditions: orbits starting in an
arbitrary small neighborhood U of a given point P of the phase
space exhibit an exponential divergence, the maximum Lyapunov
exponent at P, o, is the exponential mean rate.

E.g., if o =|7(0) —4/(0)] < 1 is the initial distance between two
nearby trajectories in U, then 6(¢t)=|v(t)—+/(t)| ~dpe”".

» The evolution of §(t) is determined by the first variational equations
(or differential map in case of a system of discret time).



For stable periodic or quasiperiodic motion at P, ¢ = 0.
Locally, the non-linear system is integrable: the full set of
local integrals or actions exists.

The Lyapunov time, T, = 0!, is a microscopical timescale

for the hyperbolic dynamics on the tangent space of the phase
space at the point P. It is usually assumed to be a
characteristic time of predictable dynamics for orbits starting
inU.

» For stable motion T}, — oo.

» Chaotic diffusion is a transport process: a statistical

description of the chaotic motion of a non-linear system in a
macroscopical volume element V' around P. lts origin lies in
the interaction of resonances and could lead to a
macroscopical change in the orbital configuration of the
system. e.g. large changes in the prime integrals.

The timescale for such a change is given by the diffusion time,
Tp, or the instability time, Tiyg;, at V.



Stable chaos
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A physical system always has a characteristic lifetime, 7.

Exponential divergence of nearby orbits is a necessary but not
sufficient condition for chaotic diffusion, stable chaos: the motion
could be stable for Ty, <« T, < Tinst.

The 522 Helga asteroid: it is in a 7/12 resonance with Jupiter, the
computed Lyapunov time is 77, = 7 x 10% yrs however its motion

shows stable for timescales larger than T > T ~ 107 yrs (Milani
& Nobili 1992).

The inner Solar System: the orbits of the planets lying in this region
exhibit a distribution of the Lyapunov time around 77, ~ 5 x 106 yrs
though they show stable over a time-scale of the order of

Tinst > T. ~ 103Ty, (Mogavero et al. 2023).



Several exoplanet systems exhibit regions of stable chaos and of fast
diffusion, i.e. large variation of the shape of the system (Gliese-876
for instance, see Cincotta et al., 2018).

Stable chaos is associated to a neglectable diffusion speed and it is
local, it depends on the position in phase space.

The diffusion speed strongly depends on resonance interactions;
invariant manifolds play a crucial role in the existence of stable
chaos, while a large overlap of resonances could lead to fast
diffusion.

Tinst is usually determined by direct numerical simulations while Tp
is estimated through the diffusion coefficient that characterizes the
transport process.

In general Tinst ~ Tp, so it is customary to estimate the instability
time through the diffusion time.



Chaos in galaxies

» The presence of chaos in galactic systems was largely discussed in
the last fifty years (Contopoulos, Merritt, Pfenniger, Papaphilippou
& Laskar among many others).

> Realistic galactic models exhibit a large amount of chaotic motion
(Maffione et al. 2015, 2018).

» The early work of Hénon & Heiles (1964), that is the very first
report about the numerical evidence of chaotic motion, is in fact a

simplified two-dimensional nonlinear axisymmetric galactic potential
for the Milky Way.

» The aim of that work was to search for the existence of a third
integral of motion in the galactic potential.

» On the other hand, many papers by J. Binney are devoted to the
construction of action-angle variables in different galactic potentials;
i.e., the Hamiltonian model is assumed integrable or close to it.

Herein we discuss these apparent quite different points of view about the
motion of stars in a galaxy.



The galactic model

The model is a frozen potential of an N-body simulation and it is given

by a quadrupolar fit with origin at the center of mass (Muzzio et al.
2005, Muzzio 2006):
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The potential corresponds to a triaxial ellipsoid with semi-axes X,Y, Z
satisfying X > Y > Z for any energy label h.

This model reproduces several dynamical properties of elliptical galaxies,
such as mass distribution, flattening, triaxiality and so on.



In spherical coordinates (r, 8, ¢) the potential reads

D(r,0,¢) =Po(r) + ®1(r) cos 2¢ + Po(r) cos 260+
D3(r)(cos2(0 + ¢) + cos2(8 — @)

where @(r), ®1(r) < 0, P2(r), @3(r) > 0 and when r — 0, all of them
vanish but ®4(0) = ®(0).
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Typical regular (quasiperiodic) orbits in the potential:

Top: Circulating orbits around the long-axis: outer and inner long-axis
tube (left and right).

Bottom: Minor-axis tube at left and at right, a box orbit that oscillates
along the long-axis.
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Tube orbits (circulating orbits)

Since |®;]/|®o| < 1,j =1,2,3, we assume |L|, L, as unperturbed
integrals and setting zo = 2o = 0,49 = 0.9, h=—-0.5, (L, = 0), the L
space samples the circulating orbits.
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R 1 MEGNO contour plot in the
(|L|,Lz) space. Bright yellow
denotes stable motion while vio-
let and black correspond to chaotic
and strong chaotic motion.
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» The short-axis tube orbits lie in the narrow strips bounded by the
separatrix at L, ~ L.

» The inner and outer long-axis tubes are separated by the pendulum
like separatrix that cross L, = 0 near L = 0.60.

» The outer long-axis tubes appear at large L.



Box orbits

Since oscillating orbits cross the origin, we adopt the energies h, and h,
as unperturbed integrals restricted to (z,y, z) = (0,0, 0):
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hy =h — hy — h, and thus the h space samples oscillating orbits.
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MEGNO contour plot in energy
space for h = —0.5.

The axial periodic orbits appear at each corner.



Diffusion

The MEGNO contour plots in L and h spaces provide a measure of the
maximum Lyapunov exponent and thus of 77, in each point. What about
diffusion and Tp?

» Take small ensembles of n,, = 500 random initial values of (|L|, L)
at 29 =0,y = 0.9,20 = 0 and (hg, h.) at zg = yo = 2o = 0.

» Introduce the sections or slices: S, : |z| + |y — 0.9] + |z| < 0.01,
Sh :|z| + |y| + |2| < 0.01.

> Integrate each of the n,, initial conditions up to 1.5 x 10° time units
and look for the intersections of the orbits with Sy, and S,.

» Since we adopted K, h, on the origin as unperturbed integrals in
energy space, the potential is expanded in powers of the coordinates
such that



O(r)=ag+ a1z + asy® + azz? + (’)(x?’,y?’, z3),
where
ag = —7.0842, a1 = 1113.051, ay = 2027.408, a3 = 2166.527.

Thus, on the section Sy, : |x| + |y| + |2] < 0.01, the energies reduce to

hy = %—i—?—ﬁ—alx h, = %+§+(L32

where (p;, x;) are the actual numerical values corresponding to the
motion in the full potential.

On Sy, ajz? <02« |ap/3|,7=1,2,3.



Examples
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Diffusion of two initial ensembles (indicated as a yellow point) in blue
and red, for t < 1.5 x 10°, onto a gray scale MEGNO contour plot in L
and h spaces.



The diffusion coefficient

Define

J? =|LJ|?> + L? in angular momentum space,

I? = h2 + h? in energy space,

a fast action or integral. Denote with y either J or I.

In the normal diffusion approximation the variance of the action values
scales with time as

var(y(t)) = 4D,t, (eventually + aconstant),
where D, is the diffusion coefficient at the center of the ensemble.
In the anomalous regime, a power law with time is expected,
var(y(t)) = 4D,t°,

ﬁy being a diffusion-like coefficient, its physical dimensions depends on
the Hurst exponent b.



Two variances can be defined after a motion time T

The ensemble variance (not restricted to any section S):

np

var(y(t)) = — 3 (y(t) = y(0))%, t<T.

n
P =1

The variance over the section S:

take a fixed interval At <« T, let t; = [At and consider motion times
ti—1 <t <t,l €Z. Letn; > 1 be the intersection of the n, initial

trajectories with S at times 7; € (¢;_1, ], thus the variance over the
section is defined as

ny

var(y(t)) = — 3 (¥ )~y )

n
b =1

In general both variances evolve with the same diffusion rate.



Angular momentum space
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Left: The ensemble variance var(.J) vs. time in logarithmic scale. The
lines correspond to the least-squares fits of a power law in the interval
3 x 10* < t < 10° while the green doted one to a line of unitary slope.
Right: Similar to the left but in linear scale and fitting a normal law.

Anomalous : b~ 0.61, b~0.09; D, ~4x10°% D;~4.4x10"*.

Normal : D; ~3.2x 1078 D;~ 1.8 x 107°.

In any case, the errors are less than 7%.



These results are in some sense confusing, since it is not possible to
decide if the diffusion is normal or not, and moreover, what is the value
of the diffusion time?

In the case of the normal assumption, the diffusion time, from
var(J) = 4Dt = A?, is

A2

4D;’

where A2 is some mean square displacement in L space.

Tp =

Similarly, in the anomalous scenario it is

2 1/b
Tﬁ:<4 ) |
4D

It is simple to check that both time-scales could differ in several orders of
magnitude. For instance, setting A% = 0.25, in the case of |L| = 0.40,

Tp~3.5x 107, Th =83 x10%.



The instability time
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Define the instability time, i, as the required motion time for the
orbits starting at initial ensembles on the segment at 0.33 < |L| < 0.404,
L. =10~ to cross any of the
. The motion time considered is T = 1.5 x 10%, so Ti,s < T

In order to reduce stickiness effects, the diffusion time is defined as the
average value over the n, initial conditions in the ensemble.

By recourse of the Shannon entropy, a diffusion coefficient Dg can be
derived and it provides accurate estimates of the instability time
(Cincotta et al, 2021, 2022, 2023).



For all these ensembles we also compute D ; and DJ, b and after setting
A = 0.07 (half of the length of the rectangle), we estimate

A2 ( A2 )1/b A2

Tp = —, Tr=|— , Tg=—

b b 4DJ s 4Dg
and compare these estimates with Tig;.
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For the same ensembles we compute the Lyapunov time, T, as the
average over the 7, initial conditions and adopting T's as an estimate of
the instability time or diffusion time we get



> A lifetime for a galaxy is ~ the Hubble time, Ty ~ 1.4 x 100 yrs.

» In galactic dynamics Ty is given in terms of the so-called crossing
time, typically, Tiross ~10% yrs and in general, T S500T poss.

» In this model, Tt 0ss = 0.575 time units, thus an upper bound to
Ty is T, = 10007T¢p0ss = 575. The dotted line in the figure denotes
this value and clearly T, < T, < Tp: stable chaos.



The energy space

In this model, the average amount of chaos in the h space is about 656%
while in the L space it reduces to about 15%. Thus it would be expected
that the diffusion could lead to larger changes in the integrals in physical
times.

The results concerning the variance approach are similar to those shown
for the L space, but now we deal with the variance over the section, since
the unperturbed integrals h,, hy, h, are defined on the section

o] + [yl + |2 < 0.01:

hzf%Jr?Jralx hz—%+§+a32

and
I = b2 + 02
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Evolution and distribution of I for the ensemble showing anomalous
diffusion:
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The average is almost constant: 1.176, quite close to the location of the

initial ensemble, while the standard deviation slowly increases with time:

0.155, 0.186, 0.201, 0.217 for t < 5 x 10*, < 10°, < 1.5 x 10%,< 2 x 10°

respectively.

The departure from a normal distribution explains the anomalous
diffusion observed.



The instability or diffusion time

Logzo (MEGNO)

For ensembles on both segments, instead of deriving the instability time
by plain numerical simulations, an upper bound for the variation of the
energies over a physical meaningful time-scale can be derived.

Setting Tinst = T = 1000Tr0ss = 575, and since Tinse = A%/4Ds we
obtain an upper bound for the change in the energies,

A= 48\/ Ds.



For comparison we also compute an independent estimate of changes in
I. Let {I1,I,...,In} be the values of the fast action on S}, for the n,,
trajectories after ¢t < T, then the variation of I is computed as

S = ZN:([ —1(0))?
N — (2 )

where I(0) is the central value of the ensemble.

After removing those ensembles located in stable regions we obtain
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In any case, over a time-scale T, = 575 > Ty, the changes in the
integrals are quite small, A < 0.07.

The Lyapunov times are in the interval 23 < T, < 34 for the
vertical segment and 25 < T}, < 250 for the horizontal one
(removing the stable cases).

Therefore macroscopical changes in the integrals could only occur
for diffusion times satisfying 1T, < T, < Tp: stable chaos.



Final remarks

» Regarding the model, the adopted potential corresponds to an
isolated elliptical galaxy.

» In this model, even in the most chaotic regions of the phase space,
we found stable chaos, T}, < T, < Tinst-

» This result seems to be global, it applies for any energy value and
position in phase space.

» Since physical time scales are bounded by ~ 4007,.ss, motion
times of this order could be large enough to reveal the exponential
divergence of nearby orbits yielding a relatively small 77, , but too
short for the transport process to operate, i.e., macroscopical
instabilities would be completely irrelevant.

» Therefore T}, is, in fact, a lower bound to predictable dynamics
since a timescale for a macroscopical instability is Tp ~ Tinst > T7..

» Similar results were found for a 4D symplectic map (Cincotta &
Giordano 2024) where we conjecture that stable chaos is expected
to be dominant in almost all predictable dynamical systems, except
for those that could be regarded as nearly ergodic.



Regarding the results for galaxies

>
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All this may change since galaxies are not isolated.

Perturbations such as interactions with nearby galaxies (at the
present or in the past) should be considered and could lead to a
different dynamics.

Moreover we are neglecting the role of gas physics (at the present or
in the past) that could play a relevant role in the kinematics of a
galaxy.

Recent results from a Galaxy Survey (SAMI) reveal that those
galaxies that exhibit thermal (chaotic) motion are much older than
those where the motion is mostly ordered (Croom et al. 2024).

Maybe a more realistic model, including galaxy interaction and gas
could lead to a faster diffusion and thus smaller diffusion times, but
the results presented herein are, in some sense, in agreement with
this study, the age of a galaxy is crucial for the existence of
macroscopical changes in the orbital configuration.
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The entropy approach (improved) - Extra material

Let us consider a dynamical system specified by ¢ > 1 different states,
the probability of being in a given state depending on a parameter p. Let
,uz(jk) (t), k=1,...,q be the probability of the system to be in the k-th
state at time ¢. The Shannon entropy is defined as

q
Sp(t) = = uPO WP ), u £0,
k=1

while S, (t) = 0 whenever uz(,k) =0, Vk.



If for a given p, the system is confined just to the I-th state for all ¢, then

M;’” = §y, and S, = 0, its minimum value. In this case S, = 0, Vt.

If for some p, and ¢ large enough, all the ,ug,k) are equal, then the system

has the same probability of being in any of the ¢ states, u](gk) =1/q. The
entropy then takes its maximum value, S, = Ingq.

Let us focus on the evolution of the entropy and assume that for a given
p, the system behaves as a nearly random one. Thus for t > 0 but not
too large, the system could be in 7,(t) < ¢ states, all of them with
nearly the same probability. Then S,(¢) ~ Inr,(¢) and

Pt
»(t)

the time derivative of the entropy rates the increase of the number of
states the system transits through, 7,(¢).

~—

S, ~ >0,

<



Identify the parameter p with a given initial point in the h or L space
(y1,y2), and the different states with ¢ small 2-dimensional cells covering
all possible values of the integrals in the finite domain Ay Ays. The size
of each cell is then taken as

_ AyAy

g .

At t = 0 the system is in a single cell, that corresponding to the initial
values of (y1,y2) on the section S, but for ¢ > 0 the diffusion carries y;
and yo over different cells. Thus after a motion time ¢ we can heuristically
relate r(t) with the mean square displacement of the actions, L2(t),

Sqr(t) =~ 2L2(t), (1)

and the evolution of r(t) is determined by the transport process in action
plane. This assumption appears in all previous formulation of the entropy
approach. Let us discuss it.



In the normal diffusion approximation, the distribution function of the
actions p(y1,y2,t) with —oo < y1,y2 < 00, satisfies a diffusion equation
of the form
dp 0%p 0%p
5 = D155 PWE
ot 9y y3

where D; is the corresponding diffusion coefficient.

+ Dy

At ¢ = 0 all action values in an ensemble are nearly the same, then
p(y1,92,0) = 0(y1 — y1(0))d(y2 — y2(0)).

The solution, p(y1,ye,t), is a normal distribution with mean
(y1) = y1(0), (y2) = y2(0) and the variance satisfying

var(yi) = 2Dt, var(yz) = 2Dst.



Let us compute r(¢) for a normal diffusion process. Being

p(Y1,y2; 01(t), 02(t)) = p1(y1;01(t))p2(ye; 02(t))

the distribution of the actions at time ¢ and since the mean value is
irrelevant, we assume that the diffusion spreads out from the origin.
The cell size §, can be splitted in each direction as

Ayl Ayz

51 X 52 s
q1 q2

with gi1g2 = ¢ and g1, g2 > 1, and since Ay; is finite and not too large, it
follows that d1, 09 < 1.



Let (y1k,y21) = (kd1,102) be the center of the kl-th cell,
k= _[Q1/2]7 ey [Q1/2}7l = _[Q2/2]7 ey [Q2/2}7 [ ] : integerpart'

Then the measure of the ki-th cell, ay;, is
plaw) = [, p1(y1;01)pa(ye; o2)dyidy:

Y1k

= p1(yr;on)dys [

Y1(k—1) Y2(1—1) pg(yQ’ag)dyQ'

The above integrals would provide a non-negligible value of p(ax;)
whenever
Y1kl < s101, [ya| < 5202, 81,82 ~ 1,

SO




Therefore the (maximum) number of cells visited by the motion would be
T~ 2k2]

T~481825 6 —  gr = 40109,
102

after setting s; =~ so ~ 1. Notice that r depends on the product of the
standard deviations in each degree of freedom.

Since o; =y/var(y;) = /2D;t, j=1,2

then
t) NS\/ DlDQt:8Dt, D: V D1D2.

In the case of the heuristical conjecture, d,r(t) ~ 2L?(t), setting
L2(t) ~ 0%(t) + 03(t), it leads to

D + Dy

0q7(t) = 4(Dy + Do)t =8(D)t, (D) = =

For isotropic diffusion, D; = Dy = D, d,7(t) =~ 8Dt and the entropy
S ~ Inr evolves logarithmically with Dt and we can define

OO‘OV)
g Y

S

DS% 5(1 e,

~
~

ol =
13



When the transport is not normal over the full time-span, the diffusion
coefficient can be defined just in the interval (¢,¢ + dt). Thus a local
entropy-like diffusion coefficient is defined as

Since 7(t) = r(t)S(t), Dg can be recast as

1 s
Thus defined, Dg(¢) has the right physical dimensions and should be
independent of time for large enough ¢.



If we take some finite small time-step At, the motion time interval (0, ?)
can be divided in small sub-intervals jAZ,j = 1,...,n where the
diffusion coefficient in each j-th interval, Dg(t;), is given by the local
diffusion coefficient Dg(t).

In general since the transport is neither isotropic, homogeneous nor
time-independent, an average procedure to numerically estimate Dg after
a motion time ¢ follows

1 n
DS: ZDS(t]>7

n—jo =
J J=Jo

where jo > 1 is introduced in order to avoid any initial transient.



In order to justify that indeed S ~ Inr, r < ¢, consider N > 1 values of
y1 and yo and let ny those falling within the k < ¢ cell, then the entropy

q T
1
S = —kg_luk Inppy=InN — ng_lnk Inng.

According to Cincotta and Shevchenko (2020), assuming that ny follows
a Poisson distribution with mean value A = N/r >> 1 then,

S~Inr+OW\1).
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